

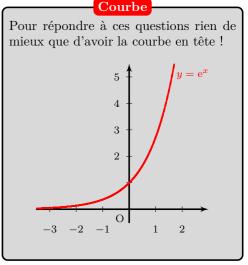
$\begin{array}{c} \mathbf{MATHEMATIQUES} \\ \mathbf{Fonction \ exponentielle: \ QCM \ (corrig\acute{e})} \end{array}$

1. Cette équation n'a pas de solution.

Pour tout réel x, $e^x > 0$.

Réponse : d.

- 2. Soit f la fonction exponentielle. Soit $\mathscr C$ sa représentation graphique.
- $f'(x) = e^x > 0$, donc \mathscr{C} n'a pas de tangente horizontale.
- $\lim_{x\to -\infty} {\bf e}^x=0$. Donc la droite d'équation y=0 est une asymptote horizontale à $\mathscr C.$
- La droite d'équation y = x n'est pas tangente à \mathscr{C} .
- \mathscr{C} n'a pas de tangente verticale.



Réponse : b.

3.
$$f(x) = e^{-x}$$
.
 f est de la forme e^u avec $u(x) = -x$.

$$f$$
 est dérivable sur \mathbb{R} et $f'(x) = \underbrace{-1}_{u'(x)} \times \underbrace{\mathrm{e}^{-x}}_{\mathrm{e}^{u(x)}} = -\mathrm{e}^{-x} = -\frac{1}{\mathrm{e}^{x}}$.

Réponse : a. et d.

4. On transforme l'écriture de f(x):

$$f(x) = 1 - \frac{\mathrm{e}^{-x} - 1}{\mathrm{e}^{-x} + 1}$$

$$= \frac{\mathrm{e}^{-x} + 1}{\mathrm{e}^{-x} + 1} - \frac{\mathrm{e}^{-x} - 1}{\mathrm{e}^{-x} + 1}$$
 Mise au même dénominateur.
$$= \frac{\mathrm{e}^{-x} + 1 - (\mathrm{e}^{-x} - 1)}{\mathrm{e}^{-x} + 1}$$

$$= \frac{\mathrm{e}^{-x} + 1 - \mathrm{e}^{-x} + 1}{\mathrm{e}^{-x} + 1}$$

$$= \frac{2}{\mathrm{e}^{-x} + 1}$$
 La réponse **a.** est correcte.
$$= \frac{2\mathrm{e}^{x}}{\mathrm{e}^{x}(\mathrm{e}^{-x} + 1)}$$
 On multiplie par e^{x} numérateur et dénominateur.
$$= \frac{2\mathrm{e}^{x}}{\mathrm{e}^{x} + 1}$$

Réponse : a. et b.

5. $(e^x - 1)(1 - x)$ est un produit, donc pour résoudre l'inéquation, on dresse un tableau de signes.

$$e^{x} - 1 > 0$$

$$e^{x} > 1$$

$$e^{x} > e^{0}$$

$$x > 0$$

A connaître

C'est une inéquation qu'il faut savoir résoudre mentalement (utilisez la représentation graphique.

 $x \longmapsto 1 - x$ est une fonction affine.

On a donc le tableau de signes :

x	$-\infty$		0		1		$+\infty$
$e^x - 1$		_	0	+		+	
1-x		+		+	0	_	
$(e^x - 1)(1 - x)$		_	0	+	0	_	

D'où $\mathcal{S} = [0; 1].$

Réponse : b.

6. On décompose f comme la somme de deux fonctions : g et h qui sont définies par $g(x) = xe^{2x}$ et h(x) = -1. g et h sont dérivables sur \mathbb{R} , donc f est dérivable sur \mathbb{R} .

g est un produit de deux fonctions u et v définies par u(x)=x et $v(x)=\mathrm{e}^{2x}$.

$$g'(x) = u'(x) \times v(x) + u(x) \times v'(x) .$$

$$g'(x) = \underbrace{1}_{u'(x)} \times \underbrace{e^{2x}}_{v(x)} + \underbrace{x}_{u(x)} \times \underbrace{2e^{2x}}_{v'(x)} = e^{2x} + 2xe^{2x} = e^{2x}(2x+1)$$

Comme h'(x) = 0, on en déduit que $f'(x) = g'(x) + 0 = e^x(2x + 1)$.

Réponse : d.

7. On décompose f comme la somme de deux fonctions : g et h qui sont définies par $g(x) = e^x(x-1)$ et $h(x) = x^2$.

g et h sont dérivables sur \mathbb{R} , donc f est dérivable sur \mathbb{R} .

g est un produit de deux fonctions u et v définies par $u(x) = e^x$ et v(x) = x - 1.

$$g'(x) = u'(x) \times v(x) + u(x) \times v'(x) .$$

$$g'(x) = \underbrace{\mathbf{e}^x}_{u'(x)} \times \underbrace{(x-1)}_{v(x)} + \underbrace{\mathbf{e}^x}_{u(x)} \times \underbrace{1}_{v'(x)} = x\mathbf{e}^x - \mathbf{e}^x + \mathbf{e}^x = x\mathbf{e}^x$$

Comme h'(x) = 2x, on en déduit que :

$$f'(x) = g'(x) + 2x = xe^x + 2x = x(e^x + 2)$$

 $oxed{Automatisme}$

Factorisez la dérivée afin d'en déduire son signe.

Pour tout réel x, $\mathbf{e}^x + 2 > 0$. On dresse le tableau de variations de f sur $\mathbb R$:

x	$-\infty$	0	+0	0
$e^x + 2$	+		+	
x	_	0	+	
f'(x)	_	0	+	
f(x)				

Réponse : a., c. et d.