Chapitre 15 : Produit scalaire dans l'espace	Evaluation
253. Étudier la position relative entre droites et plans de l'espace, déterminer leur éventuelle intersection.	•• • • • •
254. Dém. : Caractériser les pts d'un plan de l'espace par une relation de la forme $ax+by+cz+d=0$.	•• • • • •
255. Dém. : Démontrer qu'une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.	•• • • • •

	_	
Exercice	1	253
	_	400

Exercice 1 253
Étudier la position relative du plan \mathcal{P} d'équation cartésienne $2x+y-z-1=0$ et de la droite d de représentation
$\int x = 1 + 3t$
paramétrique $\begin{cases} y = -2 - 2t, & t \in \mathbb{R} \end{cases}$.
paramétrique $\begin{cases} x = 1 + 3t \\ y = -2 - 2t & t \in \mathbb{R} \\ z = -4 + t \end{cases}$
(z-z+b)
Evoroico 2 loro
Exercice 2 253
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Exercice 2 Montrer que les plans \mathscr{P}_1 et de \mathscr{P}_2 d'équations cartésiennes respectives $x+2y+z-1=0$ et $2x-3y-z+2=0$ sont sécants suivant une droite d dont une représentation paramétrique est : $\begin{cases} x=-1+t \\ y=-2+3t & t \in \mathbb{R} \\ z=6-7t \end{cases}$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$
Montrer que les plans \mathcal{P}_1 et de \mathcal{P}_2 d'équations cartésiennes respectives $x+2u+z-1=0$ et $2x-3u-z+2=0$

Exercice 3 253

Montrer que les plans \mathscr{P}_1 et de \mathscr{P}_2 d'équations cartésiennes respectives $2x+y+z+3=0$ et $x-3y+z-2=0$ sont sécants et déterminer une représentation paramétrique de la droite d'intersection d .
Exercice 4 253 Dans un repère orthonormé de l'espace, on considère les points $A(3;0;1), B(1;2;5)$ et $C(1;-2;-1)$.
a. Montrer que les points A, B et C définissent un plan.
b. Déterminer une représentation paramétrique de la droite d orthogonale au plan ABC passant par le point A .
Exercice 5 254
Dans un repère orthonormé de l'espace, l'ensemble des points $M(x; y; z)$ tels que $ax + by + cz + d = 0$ avec
$(a;b;c) \neq (0;0;0)$ est un plan de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.
· · · · · · · · · · · · · · · · · · ·

Exercice 6 255

Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécante de ce plan.