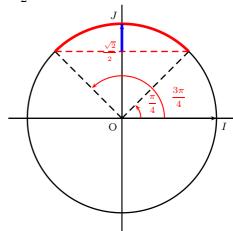
Exercice 1

1. Résolution de l'inéquation $-2\sin x + \sqrt{2} < 0$. Cette inéquation est équivalente à $-2\sin x < -\sqrt{2}$ soit $\sin x > \frac{\sqrt{2}}{2}$.

$$S = \left| \frac{\pi}{4} ; \frac{3\pi}{4} \right|.$$

Méthode

Commencez par écrire l'inéquation sous la forme $\sin x > a$. Puis, on place les points correspondants sur le cercle trigonométrique. Faites bien attention sur quel intervalle vous devez écrire les solutions!



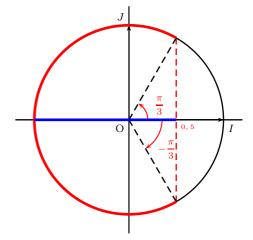
2. Résolution de l'inéquation $2\cos x - 1 \leq 0$. Cette inéquation est équivalente à $2\cos x \leqslant 1$ soit $\cos x \leqslant \frac{1}{2}$.

$$S = \left] -\pi \; ; \; -\frac{\pi}{3} \right] \cup \left[\frac{\pi}{3} \; ; \; \pi \right].$$

Attention

Comme je l'avais dit juste au-dessus, il faut faire attention à l'intervalle dans lequel on veut les solutions.

Décrivez l'intervalle $]-\pi$; π] et écrivez les solutions.

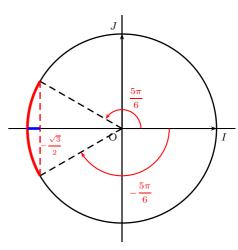


3. Résolution de l'inéquation $\cos x + \frac{\sqrt{3}}{2} \leqslant 0$. Cette inéquation est équivalente à $\cos x \leqslant -\frac{\sqrt{3}}{2}$.

$$S = \left[-\pi \ ; \ -\frac{5\pi}{6} \right] \cup \ \left[\frac{5\pi}{6} \ ; \ \pi \right[. \label{eq:S}$$

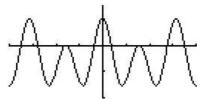
Attention

L'intervalle sur lequel on cherche les solutions est très important. Sur $[0 ; 2\pi[$, les solutions de l'inéqua-. Plus facile mais "moins marrant"...



Exercice 2

1. Courbe obtenue avec la calculatrice ($X_{\rm Min}=-4,\,X_{\rm Max}=4,\,Y_{\rm Min}=-2$ et $Y_{\rm Max}=1,5$):



2. Parité de f.

$$f(-x) = \cos(-4x) - \sin^2(-x)$$
= $\cos(4x) - (-\sin(x))^2 \operatorname{Car} \cos(-x) = \cos(x) \operatorname{et} \sin(-x) = -\sin(x)$
= $\cos(4x) - (\sin(x))^2$
= $f(x)$

Notations

 $\sin^2(x) = (\sin(x))^2$. Quand il n'y a pas d'ambiguïté, on écrit $\sin(x) = \sin x$.

On en déduit que f est paire et donc que la courbe représentative de f est symétrique par rapport à l'axe des ordonnées.

3. Graphiquement, , f semble admettre pour période π .

$$f(x+\pi) = \cos(4(x+\pi)) - \sin^2(x+\pi)$$

$$= \cos(4x+4\pi) - (\sin(x+\pi))^2$$

$$= \cos(4x) - (-\sin(x))^2 \quad \text{Car } \cos(X+2k\pi) = \cos(X) \text{ et } \sin(x+\pi) = -\sin(x)$$

$$= \cos(4x) - \sin^2(x)$$

$$= f(x)$$

f est une fonction périodique de période π .

Exercice 3

1. f est une somme de fonctions dérivables sur $\mathbb R$, donc f est dérivable sur $\mathbb R$. Pour tout x réel :

$$f'(x) = \sqrt{3} \times (-\sin(x)) + \cos(x)$$
$$= -\sqrt{3}\sin(x) + \cos(x)$$

Remarques

- La dérivée de $x \longmapsto \cos x$ est $x \longmapsto -\sin(x)$.
- La dérivée de $x \longmapsto \sin x$ est $x \longmapsto \cos(x)$. Inutile de vous dire qu'il faut les connaître par coeur !

2. La fonction g est un quotient de deux fonctions. g est dérivable sur]0; $\pi[$ comme quotient de deux fonctions dérivables sur]0; $\pi[$ dont le dénominateur ne s'annule pas sur]0; $\pi[$.

On utilise la formule $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ avec $u(x) = \cos x$ et $v(x) = \sin x$.

Rappels
$$u'(x) = -\sin x \text{ et } v'(x) = \cos x.$$

$$g'(x) = \underbrace{\frac{u'(x)}{-\sin x} \times \frac{v(x)}{\sin x} - \frac{v(x)}{\cos x} \times \frac{v'(x)}{\cos x}}_{\underbrace{(\sin x)^2}}$$

$$= \frac{-\sin^2 x - \cos^2 x}{(\sin x)^2}$$

$$= \frac{-(\sin^2 x + \cos^2 x)}{(\sin x)^2}$$

$$= \frac{-1}{\sin^2 x}$$

3. h est un produit de deux fonctions dérivables sur \mathbb{R} , elle est donc dérivable sur \mathbb{R} . On utilise donc la formule (uv)' = u'v + uv' avec $u(x) = \sin(x)$ et $v(x) = \cos(x)$.

$$h'(x) = \cos^2(x) \times \cos(x) + \sin(x) \times (-\sin(x))$$

$$= \cos^2(x) - \sin^2(x)$$
On peut encore réduire
$$\cos^2(x) - \sin^2(x) = \cos(2x)$$

On peut encore réduire
$$\cos^2(x) - \sin^2(x) = \cos(2x)$$