MATHEMATIQUES

Fonction exponentielle : entraînement savoir-faire 2 (corrigé)

Exercice 1

1.
$$A = \int_0^3 (x+4) dx$$
.

On pose f(x) = x + 4. Une primitive F de f est définie par $F(x) = \frac{x^2}{2} + 4x$.

Méthode

On calcule d'abord une primitive de la fonction f.

•
$$F(3) = \frac{3^2}{2} + 4 \times 3 = \frac{9}{2} + 12 = 16, 5.$$

• $F(0) = \frac{0^2}{2} + 4 \times 0 = 0.$

Ainsi,
$$A = \int_0^3 (x+4) dx = F(3) - F(0) = 16, 5.$$

Conseil Faites ces deux calculs séparés. C'est plus prudent.

La fonction f étant positive sur [0; 3], l'intégrale est l'aire entre la droite représentant la fonction f, l'axe des abscisses et les droites d'équation x=0 et x=3. Cette surface est donc égale à 16,5 u.a.

LOWER=0 /dx=16.5 UPPER=3

Calculatrice

On représente la fonction f en utilisant le menu Graph. On paramètre la fenêtre $Y_{Max} = 10 \text{ et } Y_{Scale} = 2.$

Avec le solveur graphique Gsolv , puis puis puis redx, en tapant 0 (Lower Bound) puis ^{EXE} puis 3 (Upper Bound) et encore ^{EXE}, on obtient la valeur de cette intégrale, ainsi que son interprétation graphique.

Calculatrice

fonction et on obtient la valeur de l'intégrale.

2.
$$B = \int_{1}^{2} \frac{1}{x^2} dx$$
.

 $f(x) = \frac{1}{x^2} = -\frac{1}{\underbrace{x^2}}$. Ainsi une primitive F de f est définie par $F(x) = -\frac{1}{x}$.

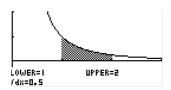
•
$$F(2) = -\frac{1}{2} = -0, 5.$$

• $F(1) = -\frac{1}{1} = -1.$

•
$$F(1) = -\frac{1}{1} = -1$$
.

$$B = \int_{1}^{2} \frac{1}{x^{2}} dx = F(2) - F(1) = -0.5 - (-1) = -0.5 + 1 = 0.5.$$

La fonction f étant positive sur [1; 2], l'intégrale est l'aire entre la courbe représentant la fonction f, l'axe des abscisses et les droites d'équation x=1 et x=2. Cette surface est donc égale à 0,5 u.a.



Calculatrice

On représente la fonction f en utilisant le menu Graph. On paramètre la fenêtre d'affichage via \bigcirc avec $X_{Min}=0, X_{Max}=3, X_{Scale}=1 Y_{Min}=-1,$ $Y_{Max} = 2$ et $Y_{Scale} = 1$.

Avec le solveur graphique Gsolv , puis puis puis puis , en tapant 1 (Lower Bound) puis EXE puis 2 (Upper Bound) et encore EXE, on obtient la valeur de cette intégrale, ainsi que son interprétation graphique.

Calculatrice

Avec le menu Avec le menu puis puis MC, puis rdx, on entre les bornes et la fonction et on obtient la valeur de l'intégrale.

$$3. C = \int_{-1}^{3} x^2 + 1 \, \mathrm{d}x.$$

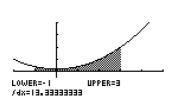
On pose $f(x) = x^2 + 1$. Une primitive F de f est définie par $F(x) = \frac{x^3}{2} + x$.

•
$$F(3) = \frac{3^3}{3} + 3 = 12.$$

• $F(-1) = \frac{(-1)^3}{3} - 1 = \frac{-1}{3} - 1 = \frac{-1}{3} - \frac{3}{3} = -\frac{4}{3}$.

$$C = \int_{-1}^{3} x^2 + 1 \, dx = F(3) - F(-1) = 12 - \left(-\frac{4}{3}\right) = 12 + \frac{4}{3} = \frac{36}{3} + \frac{4}{3} = \frac{40}{3} \approx 13,33.$$

La fonction f étant positive sur [1; 2], l'intégrale est l'aire entre la courbe représentant la fonction f, l'axe des abscisses et les droites d'équation x = 1 et x = 2. Cette surface est donc égale à 0,5 u.a.



Calculatrice

On représente la fonction f en utilisant le menu Graph. On paramètre la fenêtre d'affichage via \bigcirc avec $X_{Min}=2,~X_{Max}=5,~X_{Scale}=1~Y_{Min}=-10,$ $Y_{Max} = 20$ et $Y_{Scale} = 5$.

Avec le solveur graphique Gsolv \bigcirc , puis $\boxed{\triangleright}$ puis $\boxed{\triangleright}$ puis $\boxed{\triangleright}$, en tapant -1 (Lower Bound) puis EXE puis 3 (Upper Bound) et encore EXE, on obtient la valeur de cette intégrale, ainsi que son interprétation graphique.

$$\int_{-1}^{3} X^{2} + 1 dx$$
13.33333333

Calculatrice

Avec le menu Avec le menu puis puis Pex, puis Pex, on entre les bornes et la fonction et on obtient la valeur de l'intégrale.

Exercice 2

1.
$$A = \int_{-3}^{3} (x^2 - 3x + 1) dx$$

On pose $f(x) = x^2 - 3x + 1$. Une primitive F de f est définie par : $F(x) = \frac{x^3}{3} - 3 \times \frac{x^2}{2} + x = \frac{x^3}{3} - \frac{3x^2}{2} + x.$

•
$$F(3) = \frac{3^3}{3} - \frac{3 \times 3^2}{2} + 3 = 9 - 13, 5 + 3 = -1, 5$$

•
$$F(3) = \frac{3^3}{3} - \frac{3 \times 3^2}{2} + 3 = 9 - 13, 5 + 3 = -1, 5.$$

• $F(-3) = \frac{(-3)^3}{3} - \frac{3 \times (-3)^2}{2} - 3 = -9 - 13, 5 - 3 = -25, 5.$

$$A = \int_{-3}^{3} (x^2 - 3x + 1) dx = F(3) - F(-3) = -1, 5 - (-25, 5) = 24.$$

calculatrice rapide

2.
$$B = \int_2^6 \left(\frac{x^2}{2} - 1\right) \, \mathrm{d}x$$

On pose $f(x) = \frac{x^2}{2} - 1 = \frac{1}{2}x^2 - 1$.

Une primitive F de f est définie par : $F(x) = \frac{1}{2} \times \frac{x^3}{3} - x = \frac{x^3}{6} - x$.

•
$$F(6) = \frac{6^3}{6} - 6 = 30.$$

•
$$F(2) = \frac{2^3}{6} - 2 = \frac{8}{6} - \frac{12}{6} = -\frac{2}{3}$$

$$B = \int_{2}^{6} \left(\frac{x^{2}}{2} - 1\right) dx = F(6) - F(2) = 30 - \left(-\frac{2}{3}\right) = \frac{92}{3} \approx 30,67.$$

3.
$$C = \int_{-2}^{1} 2e^{2x+1} dx$$

On pose $f(x) = \underbrace{2}_{u'(x)} \underbrace{e^{2x+1}}_{e^{u(x)}}$.

Une primitive F de f est définie par : $F(x) = e^{2x+1}$.

•
$$F(1) = e^{2 \times 1 + 1} = e^3$$
.

•
$$F(1) = e^{2 \times 1 + 1} = e^3$$
.
• $F(-2) = e^{2 \times (-2) + 1} = e^{-3}$.

$$C = \int_{-2}^{1} 2e^{2x+1} dx = F(1) - F(-2) = e^{3} - e^{-3} \approx 20,04.$$

4.
$$D = \int_{1}^{2} \frac{1}{x} + 2 \, \mathrm{d}x$$

On pose $f(x) = \frac{1}{x} + 2$. Une primitive F de f est définie par : $F(x) = \ln x + 2x$.

- $F(2) = \ln 2 + 4$.
- $F(1) = \ln 1 + 2 = 2$.

$$D = \int_{1}^{2} \frac{1}{x} + 2 \, dx = F(2) - F(1) = \ln 2 + 4 - 2 = \ln 2 + 2 \simeq 2,69.$$

Conseil

J'ai transformé l'écriture de f(x) pour simplifier le calcul d'une primitive.

Calculatrice

N'hésitez pas à prendre votre calculatrice pour faire ces petits calculs de fractions. Avec la calculatrice:

$$\int_{2}^{6} \frac{x^2}{2} - 1 dx$$
30.66666667

A reconnaître

Cette forme $u'e^u$ est à reconnaître! Si $f = u'e^u$, alors $F = e^u$.

Calculatrice

Avec la calculatrice :

Une primitive de $x \mapsto \frac{1}{x}$ est $x \longmapsto \ln x$.

Calculatrice

Avec la calculatrice:

Exercice 3

• Une primitive de $x \mapsto -x^2 + 4x - 1$ est $x \mapsto -\frac{1}{3}x^3 + 2x^2 - x$.

$$\int_{-1}^{1} (-x^2 + 4x - 1) dx = \left[-\frac{1}{3}x^3 + 2x^2 - x \right]_{-1}^{1}$$

$$= \left(-\frac{1^3}{3} + 2 \times 1^2 - 1 \right) - \left(-\frac{(-1)^3}{3} + 2 \times (-1) \right)$$
Avec la calculatrice: Voici une autre façon de présenter les calculs.
$$= -\frac{1}{3} + 2 - 1 - \frac{1}{3} - 2 - 1$$

$$= -\frac{2}{3} - 2$$

• Une primitive de $x \mapsto 2\cos(x) - 3\sin(x)$ est $x \mapsto 2\sin(x) + 3\cos(x)$. Ainsi,

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2\cos(x) - 3\sin(x) \, dx = \left[2\sin(x) + 3\cos(x)\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= \left(2\sin\left(\frac{\pi}{2}\right) + 3\cos\left(\frac{\pi}{2}\right)\right) - \left(2\sin\left(\frac{\pi}{4}\right) + 3\cos\left(\frac{\pi}{4}\right)\right)$$

$$= 2 - \frac{5}{2}\sqrt{2}$$

Pensez-y!

Vous pouvez prendre votre calculatrice pour vérification.

• Une primitive de $x \longmapsto \frac{x}{\sqrt{x^2 + 1}}$ est $x \longmapsto \sqrt{x^2 + 1}$.

 $f(x) = \frac{x}{\sqrt{x^2 + 1}} = \frac{2x}{2\sqrt{x^2 + 1}} \text{ est de la forme}$ $f = \frac{u'}{2\sqrt{u}} \text{ dont une primitive est } \sqrt{u}.$

Ainsi,

$$\int_{0}^{1} \frac{x}{\sqrt{x^{2}+1}} dx = \left[\frac{1}{2} \times 2\sqrt{x^{2}+1}\right]_{0}^{1}$$

$$= \left[\sqrt{x^{2}+1}\right]_{0}^{1}$$

$$= \sqrt{1^{2}+1} - \sqrt{0^{2}+1}$$

$$= \sqrt{2}-1$$

• Une primitive de $x \longmapsto \frac{\ln(x)}{x}$ est $x \longmapsto \frac{1}{2} \times (\ln(x)^2)$.

 $f(x) = \frac{\ln(x)}{x} = \underbrace{\frac{1}{x} \times \ln x}_{u'(x)} \text{ est de la forme}$ $f = u' \times u \text{ dont une primitive est } \frac{u^2}{2}.$

Ainsi,

$$\int_{1}^{e} \frac{\ln(x)}{x} dx = \left[\frac{1}{2} \times (\ln(x)^{2})\right]_{1}^{e}$$

$$= \frac{1}{2} \times (\ln(e)^{2}) - \frac{1}{2} \times (\ln(1)^{2})$$

$$= \frac{1}{2} \times 1^{2} - \frac{1}{2} \times 0^{2}$$

$$= \frac{1}{2}.$$

Exercice 4

a. Étudier le signe de f sur l'intervalle [-4 ; 2].

On étudie le signe de $2x^2 + 2x - 3$ à l'aide du discriminant. $\Delta = 2^2 - 4 \times 1 \times (-3) = 16 > 0$.

Deux racines réelles $x_1 = -3$ et $x_2 = 1$.

On dresse le tableau de signes de f sur [-4 ; 2] :

x	-4		-3		1		2
$x^2 + 2x - 3$		+	0	_	0	+	

Explications

b. Calcul de l'aire.

Lorsque f est positive sur [a ; b], l'aire est $\int_a^b f(x) dx$ et lorsque f est négative sur [c ; d], l'aire est $-\int_c^d f(x) dx$.

$$\mathscr{A}(\mathscr{D}) = \int_{-4}^{-3} f(x) \, dx - \int_{-3}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx$$

$$= \left[\frac{1}{3} x^{3} + x^{2} - 3x \right]_{-4}^{-3} - \left[-\frac{1}{3} x^{3} + x^{2} - 3x \right]_{-3}^{1} + \left[\frac{1}{3} x^{3} + x^{2} - 3x \right]_{1}^{2}$$

$$= \left(9 - \frac{20}{3} \right) - \left(-\frac{5}{3} - 9 \right) + \left(\frac{2}{3} - \left(-\frac{5}{3} \right) \right) = 9 - \frac{20}{3} + \frac{5}{3} + 9 + \frac{2}{3} + \frac{5}{3} = 18 - \frac{8}{3} = \frac{46}{3} \approx 15,33u.a.$$

Exercice 5

• On détermine dans un premier temps les points d'intersection des courbes \mathscr{C}_f et \mathscr{C}_g en résolvant sur \mathbb{R} l'équation f(x) = g(x). $f(x) = g(x) \iff x^2 - x - 2 = 0$ $\Delta = (-1)^2 - 4 \times 1 \times (-2) = 9 > 0$.

Deux racines réels $x_1 = -1$ et $x_2 = 2$.

De plus, pour tout $x \in [-1; 2], f(x) \ge g(x)$.

 $x_1 = -1$ et $x_2 = 2$. L'aire est donnée par l'intégrale de la différence "fonction de dessus – fonction de des

sous ". Donc il est important d'avoir cette comparaison entre f et g sur [-1; 2].

Explications

 $\bullet\,$ On calcule l'aire du domaine $\mathcal D$ à l'aide d'une intégrale :

$$\mathscr{A}(\mathscr{D}) = \int_{-1}^{2} (f(x) - g(x)) \, dx = \int_{-1}^{2} (-x^2 + x + 2) \, dx$$
$$= \left[-\frac{1}{3}x^3 + \frac{1}{2}x^2 + 2x \right]_{-1}^{2} = \frac{10}{3} + \frac{7}{6} = 4, 5 \ u.a.$$

Exercice 6

- 1. a. On démontre cet encadrement en deux étapes :
 - Pour tout $x \in \mathbb{R}$, $x^2 + 1 \geqslant 1$ donc $\frac{1}{x^2 + 1} \leqslant 1$ car la fonction inverse est décroissante sur]0; $+\infty[$.
 - On étudie le signe de $\frac{1}{x^2+1}-(-x^2+1)$ sur \mathbb{R} :

$$\frac{1}{x^2+1} - (-x^2+1) = \frac{1}{x^2+1} + x^2 - 1 = \frac{1}{x^2+1} + \frac{(x^2-1)(x^2+1)}{x^2+1} = \frac{1+x^4-1}{x^2+1} = \frac{x^4}{x^2+1} \geqslant 0$$

Pour tout $x \in \mathbb{R}$, $\frac{1}{x^2 + 1} - (-x^2 + 1) \ge 0 \iff \frac{1}{x^2 + 1} \ge -x^2 + 1$.

On en déduit l'encadrement $-x^2 + 1 \leqslant \frac{1}{r^2 + 1} \leqslant 1$ sur \mathbb{R} .

b. On obtient en particulier sur l'intervalle $[0; 1]: -x^2 + 1 \leqslant \frac{1}{x^2 + 1} \leqslant 1$ et donc :

$$\int_0^1 (-x^2 + 1) \, \mathrm{d}x \leqslant \int_0^1 \frac{1}{x^2 + 1} \, \mathrm{d}x \leqslant \int_0^1 1 \, \mathrm{d}x$$

$$\iff \left[-\frac{1}{3}x^3 + x \right]_0^1 \leqslant \int_0^1 \frac{1}{x^2 + 1} \, \mathrm{d}x \leqslant [x]_0^1$$

$$\iff \frac{2}{3} \leqslant \int_0^1 \frac{1}{x^2 + 1} \, \mathrm{d}x \leqslant 1$$

2. Pour tout
$$\frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{2} : 0 \leqslant \sin(x) \leqslant 1 \iff 0 \leqslant \frac{\sin(x)}{x^2} \leqslant \frac{1}{x^2}$$
. On en déduit donc :

$$0 \leqslant \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin(x)}{x^2} dx \leqslant \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{x^2} dx$$

$$\iff 0 \leqslant \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin(x)}{x^2} dx \leqslant \left[-\frac{1}{x} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$\iff 0 \leqslant \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin(x)}{x^2} dx \leqslant -\frac{2}{\pi} + \frac{4}{\pi}$$

$$\iff 0 \leqslant \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin(x)}{x^2} dx \leqslant \frac{2}{\pi} \simeq 0,637$$

Exercice 7
$$\mu = \frac{1}{3} \int_0^3 (3x^2 - 6x + 1, 5) dx = \frac{1}{3} \times \left[x^3 - 3x^2 + 1, 5x \right]_0^3 = \frac{1}{3} \times 4, 5 = 1, 5.$$

On en déduit que le bénéfice moyen est de 1500 \in pour une quantité x de produit, variant de 0 à 3 kg.