

Exercice 1 Déterminer la valeur de a pour f définie par $f(x) = x + 1$ définisse une densité sur $[-a; a]$.	
 Exercice 2 On considère la fonction f: x → 3x² définie sur l'intervalle [0; 1]. 1. Montrer que la fonction f ainsi définie est une fonction à densité de probabilité sur l'interval 2. Soit X une variable aléatoire suivant la loi de densité de f. a. Calculer P(X < 0,5) et P_(X<0,5) (X > 0,3) b. Calculer E(X). 	le [0 ; 1].
b. Calcule: $E(A)$.	

$\mathbf{F}_{\mathbf{r} \cdot \mathbf{r}} \sim$:	~~	•
\mathbf{Exe}	1.(;1	CE	.)

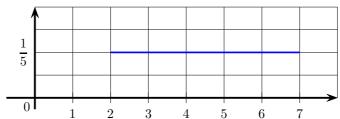
On considère la fonction $f: x \longmapsto 3x^2$ définie sur l'intervalle [0; 1].

- 1. Montrer que la fonction f ainsi définie est une fonction à densité de probabilité sur l'intervalle [0; 1].
- 2. Soit X une variable aléatoire suivant la loi de densité de f.
 - a. Calculer $P\left(X<0,5\right)$ et $P_{\left(X<0,5\right)}\left(X>0,3\right)$
 - **b.** Calculer E(X).

• • • •	 	• •	 	 • •	 • •		· • •	٠.	٠.	• •		 • •	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 	٠.	 ٠.	• •	 ٠.	• •	 	• •	 · • •	 ٠.	•
	 		 	 	 ٠.				٠.			 	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.	٠.		 	٠.	 ٠.		 	٠.	 		 · • •	 ٠.	
	 		 	 	 ٠.				٠.			 	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.	٠.		 	٠.	 ٠.		 	٠.	 		 · • •	 ٠.	
• • • •	 		 	 	 ٠.		· • •		• •	• •		 ٠.	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.	٠.		 	• •	 ٠.	• •	 • •	• •	 		 · • •	 • •	
	 		 	 	 ٠.				٠.			 	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.	٠.		 	٠.	 ٠.		 	٠.	 		 · • •	 ٠.	
	 		 	 	 ٠.				٠.			 	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.	٠.		 	٠.	 ٠.		 	٠.	 		 · • •	 ٠.	
	 		 	 • •	 ٠.	٠		٠.	٠.	• •	٠.	 		٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.		 	٠.	 ٠.	• •	 	٠.	 		 	 ٠.	
	 		 	 • •	 ٠.	٠		٠.	٠.	• •	٠.	 		٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.		 	٠.	 ٠.	• •	 	٠.	 		 	 ٠.	
	 		 	 • •	 ٠.	٠		٠.	٠.	• •	٠.	 		٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.		 	٠.	 ٠.	• •	 	٠.	 		 	 ٠.	
	 		 	 	 					• •		 		٠.	٠.		٠.			٠.		٠.	٠.		 		 	• •	 		 		 · • •	 	
	 		 	 	 							 			٠.			٠.		٠.	٠.		٠.		 		 		 		 		 · • •	 ٠.	
	 		 	 	 							 			٠.			٠.		٠.	٠.		٠.		 		 		 		 		 · • •	 ٠.	
	 		 	 	 							 			٠.			٠.		٠.	٠.		٠.		 		 		 		 		 · • •	 ٠.	
	 		 	 	 ٠.		· • •		٠.			 		٠.	٠.			٠.		٠.	٠.	٠.	٠.		 	٠.	 ٠.		 		 		 · • •	 	
	 		 	 	 							 			٠.			٠.		٠.	٠.		٠.		 		 		 		 		 · • •	 ٠.	
	 		 	 	 							 			٠.			٠.		٠.	٠.		٠.		 		 		 		 		 · • •	 ٠.	
	 		 	 	 							 			٠.										 		 		 ٠.		 		 	 ٠.	

Exercice 4

- 1. Calculer la valeur exacte de l'intégrale $I=\int_0^2 0, 5\mathrm{e}^{0,5x}\,\mathrm{d}x.$
- **2.** En déduire que la fonction f définie sur [0;2] par $f(x) = \frac{0.5e^{0.5x}}{e-1}$ est une fonction de densité sur [0;2].


3.	Soit X	la v	ariable	e aléa	toire	de d	lensi	té d	e pr	obal	bilit	$ \acute{e} f. $	La	prol	oabil	lité I	P(X)	> 1	1, 2)	est	-elle	e su	pér	ieuı	re à	0,5	?
• •						• • • •	• • • • •					• • • •						• • •	• • • •	• • •		• • •	• • •		• • •	• • • •	

Exercice 5

Cet exercice est un questionnaire à choix multiples.

Pour chacune des questions posées, une seule des quatre réponses est exacte.

1. Une variable aléatoire X suit une loi uniforme sur l'intervalle [2;7] dont la fonction de densité est représentée ci-dessous.

P(A) désigne la probabilité d'un évènement A et E(X) l'espérance de la variable aléatoire X.

a.
$$P(3 \le X \le 7) = \frac{1}{4}$$

b.
$$P(X \ge 4) = P(2 \le X \le 5)$$
 c. $E(X) = \frac{9}{5}$

c.
$$E(X) = \frac{9}{5}$$

2. En suivant la loi uniforme, on choisit un nombre au hasard dans l'intervalle [4;11]. La probabilité que ce nombre soit inférieur à 10 est :

a.
$$\frac{6}{11}$$

b.
$$\frac{10}{7}$$

c.
$$\frac{10}{11}$$

d.
$$\frac{6}{7}$$

3. La durée (en minutes) de la traversée entre le continent et l'île de Porquerolles est modélisée par une variable aléatoire D qui suit une loi uniforme sur l'intervalle [30; 50].

La probabilité que la traversée entre le continent et l'île dure au moins 35 minutes est :

- **a.** 0,25
- **b.** 0.35
- **c.** 0.70
- **d.** 0.75