MATHEMATIQUES

Lois normales et fluctuation : entraînement 3 (corrigé)

Exercice 1

Partie 1

- 1. On répète 60 fois, de façon indépendantes, l'expérience « choisir un morceau de musique » qui compte 2 issues :
 - « le morceau choisi est un morceau de musique classique » considéré comme succès, de probabilité 0,3
 - ou pas...

Nous sommes donc en présence d'un schéma de Bernoulli et la variable aléatoire X prenant pour valeurs le nombre de succès obtenus suit la loi binomiale de paramètres 60 et 0,3.

L'intervalle de fluctuation asymptotique au seuil 95 % de la proportion de morceaux de musique classique dans un échantillon de taille 60 est donc donné par :

$$I = \left[p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \; ; \; p + 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$$
$$= \left[0,3 - 1,96 \frac{\sqrt{0,3 \times 0,7}}{\sqrt{60}} \; ; \; 0,3 + 1,96 \frac{\sqrt{0,3 \times 0,7}}{\sqrt{60}} \right]$$
$$= \left[0,184 \; ; 0,416 \right]$$

2. La fréquence observée par Thomas est $\frac{12}{60} = 0, 2$ est dans l'intervalle précédent. Donc NON, il n'y a pas de raison de penser que le baladeur est défectueux.

Partie 2

- 1. $P(180 \le X \le 220) \simeq 0,682$.
- **2.** On veut $P(X > 240) \simeq 0.023$.

Exercice 2

- 1. On réalise un sondage sur un échantillon de n personnes (n, entier naturel non nul). L'intervalle de confiance au seuil de 95 % est $\left[f \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right]$; son amplitude vaut donc $\frac{2}{\sqrt{n}}$.
 - $\frac{2}{\sqrt{n}} = 0,02 \iff n = 10\,000$ donc la bonne réponse est la **réponse c**.
- 2. L'intervalle de confiance au seuil de 95 % est $\left[\frac{225}{300} \frac{1}{\sqrt{300}}; \frac{225}{300} \frac{1}{\sqrt{300}}\right] \approx [0,692; 0,808]$, donc la bonne réponse est la **réponse b**.
- **3.** Un intervalle de confiance, au seuil de 95%, est $\left[f \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right]$,

où f est la fréquence des personnes, sur l'échantillon, déclarant vouloir voter pour le candidat A et n la taille de l'échantillon.

Ici, on a
$$f = 0,535$$
, $f - \frac{1}{\sqrt{n}} = 0,51$ et $f + \frac{1}{\sqrt{n}} = 0,56$.
 $f - \frac{1}{\sqrt{n}} = 0,51$ donne $\frac{1}{\sqrt{n}} = 0,535 - 0,51 = 0,025$,
soit $\sqrt{n} = \frac{1}{0.025} = 40$, puis $n = 40^2 = 1600$.

La bonne réponse est la **réponse c.**

4. Un intervalle de confiance au niveau de confiance de 0,95 vaut $\left[f - \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right]$, ici $f = \frac{484}{4000} = 0,121$ et $n = 4\,000$.

L'intervalle vaut donc :
$$\left[0,121 - \frac{1}{\sqrt{4\ 000}};\ 0,121 + \frac{1}{\sqrt{4\ 000}}\right]$$
. Soit encore : $[0,105;\ 0,137]$.

La bonne réponse est la **réponse c)**

5. L'amplitude de l'intervalle $\left[f - \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right]$ vaut $\frac{2}{\sqrt{n}}$. $\frac{2}{\sqrt{n}} = 0,01 \Leftrightarrow \sqrt{n} = \frac{2}{0,01} \Leftrightarrow n = 200^2 \Leftrightarrow n = 40\,000.$

La bonne réponse est la **réponse d)**