Droites et systèmes

Les savoir-faire du chapitre

- **230.** Représenter une droite.
- **231.** Déterminer graphiquement des informations sur une droite.
- **232.** Déterminer une équation de droite par le calcul.
- **233.** Déterminer si deux droites sont parallèles ou sécantes.
- **234.** Résoudre un système de deux équations à deux inconnues.

Un peu de calcul mental

1) Calculer :
 - $5 \times (-2) + 9 = ...
 - (-4) - 1 \times 9 = ...
 - 7 \times 3 + 5 \times 4 = ...
 - 3 \times (-8) + 4 \times 2 = ...
 - 2 \times 1,5 - 0,75 + 1,25 = ...
 - 5 - 5,5 + 6 - 4 = ...
 - 4 \times 0,1 + 6 = ...

2) Exprimer y en fonction de x.
 - $y + x + 6 = 0$... $y = ...
 - 3x + y - 1 = 0$... $y = ...
 - 2x - y = 2$... $y = ...
 - 2x + 3y - 4 = 0$... $y = ...
 - x - 2y + 1 = 0$... $y = ...

3) Calculer sous forme décimale :
 - $\frac{1 - 3}{5 - 10} = ...
 - \frac{8 - (-3)}{2 - 4} = ...
 - \frac{-1 - (-3)}{5 - 15} = ...
 - \frac{1 + (-4)}{8 - 4} = ...

4) Exprimer x lorsque $y = 3$:
 - $y + x + 6 = 0$... $x = ...
 - 3x + y - 1 = 0$... $x = ...
 - 2x - y = 2$... $x = ...
 - 2x + 3y - 4 = 0$... $x = ...
 - x - 2y + 1 = 0$... $x = ...

5) Calculer y lorsque $x = -2$:
 - $x + y + 1 = 0$... $y = ...
 - 2x + y - 2 = 0$... $y = ...
 - 5x + y = 2$... $y = ...
 - -x + 3y - 1 = 0$... $y = ...

6) On donne l’équation $y = \frac{-10 + 5x}{2}$.
 - Cette équation peut s’écrire sous la forme $y = mx + p$.
 - Quelles sont les valeurs de m et de p ?
 - Quelle est la valeur de x telle que $y = 0$?
 - Quelle est la valeur de y telle que $x = 0$?
Savoir-faire - Méthodes

Représenter une droite.

Pour représenter graphiquement une droite, on peut :
- soit utiliser un tableau permettant d’obtenir les coordonnées de deux points de la droite (deux points suffisent pour obtenir le tracé);
- soit utiliser l’ordonnée à l’origine et le coefficient directeur de la droite.

1) Après avoir complété le tableau suivant, représenter graphiquement les droites d_1 et d_2 :

$$
\begin{array}{|c|c|}
\hline
x & y \\
\hline
& \\
\hline
\end{array}
$$

$$d_1 : y = 2x - 1 \quad d_2 : y = -x + 1$$

2) En utilisant l’ordonnée à l’origine et le coefficient directeur, représenter graphiquement les droites d_3 et d_4 définies par :

$$d_3 : y = 2x - 3 \quad \text{et} \quad d_4 : y = -3x - 1$$

3) Représenter graphiquement les droites d_5 et d_6 dont les équations sont : $y = -x$ et $y = \frac{1}{3}x - 2$.

4) En utilisant le repère ci-contre, représenter les droites d_1, d_2, d_3 et d_4 dont les équations sont :

$$
\begin{align*}
\text{d}_1 & : y = 3 \\
\text{d}_2 & : x = -2 \\
\text{d}_3 & : y + 4 = 0 \\
\text{d}_4 & : 2x - 8 = 0
\end{align*}
$$
Déterminer graphiquement des informations sur une droite.

- Si la droite est **verticale**, pour obtenir une équation de la droite, il suffit de lire c, l’abscisse du point d’intersection de la droite avec l’axe des abscisses. L’équation réduite de la droite est alors $x = c$.
- Sinon, l’équation réduite de la droite est de la forme $y = mx + p$.
 - p est l’**ordonnée** du point d’intersection de la droite avec l’axe des ordonnées.
 - m est l’**accroissement des ordonnées** (positif ou négatif) lorsque l’on passe d’un point de la droite à un autre point dont l’abscisse est augmentée d’une unité.

Donner les équations des droites représentées ci-dessous.
Détecturer une équation de droite par le calcul.

1) a) Déterminer l’équation réduite de la droite \((AB)\) avec \(A(-2 ; 5)\) et \(B(-2 ; 6)\).

b) Déterminer l’équation réduite de la droite \((AB)\) avec \(A(5 ; -2)\) et \(B(-1 ; -4)\).

L’équation réduite d’une droite est de la forme \(y = mx + p\). Lorsque l’on connaît les coordonnées \((x_1 ; y_1)\) et \((x_2 ; y_2)\) de deux points distincts d’une droite,

- si \(x_1 = x_2\), la droite est parallèle à l’axe des ordonnées. Son équation réduite est \(x = x_1\).
- si \(x_1 \neq x_2\), la droite n’est pas parallèle à l’axe des ordonnées.

Son équation réduite est de la forme \(y = mx + p\).

- Le coefficient directeur se calcule comme suit : \(m = \frac{y_1 - y_2}{x_1 - x_2}\) ou \(m = \frac{y_2 - y_1}{x_2 - x_1}\).
- On calcule l’ordonnée à l’origine \(p\) avec les coordonnées de l’un ou l’autre des points en résolvant une équation d’inconnue \(p : y_1 = mx_1 + p\) ou \(y_2 = mx_2 + p\).

2) a) Déterminer une équation cartésienne de la droite \((AB)\) avec \(A(2 ; 2)\) et \(B(-1 ; -7)\).

b) Déterminer une équation cartésienne de la droite passant par \(A(-4 ; 1)\) et de vecteur directeur \(\vec{u}(1 ; 4)\).

Une équation cartésienne de droite est de la forme \(ax + by + c = 0\).

Pour déterminer une équation cartésienne d’une droite, Deux méthodes :

Méthode 1 :
- On détermine un vecteur directeur de la droite (soit il est donné, soit on a deux points et avec ces deux points on en détermine un). Ce vecteur directeur permet d’obtenir \(a\) et \(b\) puisqu’on sait sait que \(\vec{u}(-b ; a)\) est un vecteur directeur de la droite ;
- On trouve la valeur de \(c\) en utilisant les coordonnées d’un point de la droite.

Méthode 2 :
Il nous faut un point de la droite \((A)\) et un vecteur directeur \((\vec{u})\).
La droite \(d\) est l’ensemble des points \(M\) tels que \(\overrightarrow{AM}\) et \(\vec{u}\) sont colinéaires.
- En posant \(M(x ; y)\) un point de la droite, on détermine les coordonnées de \(\overrightarrow{AM}\) en fonction de \(x\) et \(y\) ;
- On calcule le déterminant des vecteurs \(\overrightarrow{AM}\) et \(\vec{u}\) et on écrit que ce déterminant est nul (puisque ces deux vecteurs sont colinéaires). Et voilà !
Déterminer si deux droites sont parallèles ou sécantes.

Déterminer dans chacun des cas la position relative des droites dans chacun des cas suivants :

1) $d : -4x + 6y + 20 = 0$ et $d' : 10x - 15y - 4 = 0$
2) $d : y = 13x - 5$ et $d' : y = 8 + 13x$
3) $d : 2x - 7y - 6$ et $d' : -5x - 3y - 5 = 0$
4) $d : y = -x + 14$ et $d' : y - 8x - 15 = 0$

Deux droites peuvent être parallèles (éventuellement confondues) ou sécantes.

Pour étudier la position relative de deux droites :
- Si on a les coefficients directeurs : on regarde s'ils sont égaux. Dans ce cas, les droites sont soit parallèles soit confondues. Autrement, elles sont sécantes.
- Si on a des vecteurs directeurs : on teste la colinéarité de ces deux vecteurs. S'ils sont colinéaires, les droites sont soit parallèles, soit confondues, sinon, elles sont sécantes.
S’entraîner

Résoudre un système de deux équations à deux inconnues.
Résoudre les systèmes suivants en utilisant les deux méthodes de résolution.

1) \[
\begin{align*}
5x + y &= 2 \\
15x + y &= 4
\end{align*}
\]

2) \[
\begin{align*}
6x + 2y &= 9 \\
2x - y &= -3
\end{align*}
\]

- **Méthode par substitution** :
 Cette méthode consiste à isoler à partir d’une équation et à la remplacer dans l’autre équation afin d’obtenir une nouvelle équation avec une seule inconnue.
 On résout alors cette nouvelle équation puis on remplace l’inconnue trouvée dans la première équation afin de trouver la seconde inconnue.

- **Méthode par combinaison** :
 Cette méthode consiste à multiplier les deux équations par des nombres de telle manière qu’en additionnant les équations membre à membre, une inconnue s’élimine. Ainsi, il n’y a plus qu’à résoudre une équation à une seule inconnue. Pour trouver la deuxième inconnue, on procède comme pour la méthode précédente.
Droites

1 On donne le graphique ci-contre.

1) Quelle est l’ordonnée à l’origine de cette droite ?
2) Quel est le coefficient directeur de cette droite ?

2 En utilisant un tableau, représenter, dans un repère les droites définies par :

1) \(d_1 : y = 3x - 4 \)
2) \(d_2 : y = 5 - 2x \)
3) \(d_3 : y = 2x \)
4) \(d_4 : y = 3 \)
5) \(d_5 : y = -3x + 1 \)
6) \(d_6 : y = 4 - 3x \)

3 Représenter en utilisant le coefficient directeur et l’ordonnée à l’origine, dans un repère, les droites définies par :

1) \(d_1 : y = x + 4 \)
2) \(d_2 : y = -x + 2 \)
3) \(d_3 : y = -4x + 5 \)
4) \(d_4 : y = -5 + 3x \)
5) \(d_5 : y = -2 \)
6) \(d_6 : y = x - 3 \)

4 Déterminer les équations des droites \(D_1, D_2, D_3, D_4 \) et \(D_5 \).

5 Même énoncé que l’exercice précédent.

6 Même énoncé que l’exercice précédent.

7 Dans un repère, une fonction affine \(f \) est représentée par la droite \((AB)\) avec \(A(-1; 6) \) et \(B(2; -6) \).

1) Déterminer une expression algébrique de \(f \).
2) Le point \(C \left(\frac{1}{3}; \frac{2}{3} \right) \) est-il aligné avec \(A \) et \(B \) ?

8 Déterminer l’ordonnée à l’origine de la droite \(d \) ci-contre.

9 Indiquer si l’équation proposée est une équation de droites. Préciser l’ordonnée à l’origine et le coefficient directeur le cas échéant.

1) \(y^2 = 3x - 2 \)
2) \(y = -5x + 7 \)
3) \(x^2 = 1 \)
4) \(x = 3 \)
5) \(y = 5x^2 + 5 \)
6) \(y = -3x + 1 \)

10 Vérifier si le point \(C(3; 7) \) appartient à chacune des droites dont les équations sont données ci-dessous.

1) \(y = 3x + 2 \)
2) \(y = 3x - 2 \)
3) \(y = -2x - 2 \)
4) \(y = -2x + 13 \)

11 Indiquer si l’équation proposée est celle d’une droite parallèle à un axe du repère et préciser lequel, le cas échéant.

1) \(y = 5x - 17 \)
2) \(x = 2,5 \)
3) \(y = -3x - 12 \)
4) \(y = 5 \)
5) \(y = -\frac{1}{2}x + 7 \)
6) \(y = 2x \)

12 Déterminer l’équation réduite de la droite passant par les deux points proposés.
Même consigne qu’à l’exercice précédent.

Le point
On considère la droite
4) $y - 5x = 3$

Le point
Donner un vecteur directeur et un point de la

L tracer la droite

5) $x = 5$

L tracer dans le même repère la droite

y et vecteur $\vec{u} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$.

6) $y = 5x - 3$

T tracer la droite

T tracer dans le même repère la droite

y et vecteur $\vec{u} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$.

22) Déterminer une équation cartésienne de la droite définie par un point et un vecteur directeur :

1) d_1 : point $A(4 ; -1)$ et vecteur $\vec{u} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

2) d_2 : point $B(0 ; 0)$ et vecteur $\vec{u} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$

3) d_3 : point $C(0 ; -1)$ et vecteur $\vec{u} = \begin{pmatrix} 1/3 \\ -1/2 \end{pmatrix}$

4) d_4 : point $D(1 ; 1)$ et vecteur $\vec{u} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$

23) Donner un vecteur directeur et un point de la droite d d’équation.

1) $-x + y = 3$

2) $12x + 25y - 7 = 0$

3) $y - 7x = -8$

4) $x/3 + y - 1 = 0$

24) Déterminer une équation cartésienne de la droite (AB) dans les cas suivants :

1) $A(1 ; 2)$ et $B(0 ; 3)$

2) $A(0 ; 5)$ et $B(-1 ; 5)$

25) Déterminer une équation cartésienne de la droite passant par les points :

1) $C(2 ; 0)$ et $D(4 ; -3)$

2) $E(2 ; 3)$ et $H(2 ; -6)$

3) $F \left(\frac{1}{3} ; 3 \right)$ et $R \left(2 ; -\frac{1}{5} \right)$

4) $L \left(\frac{1}{3} ; 5 \right)$ et $N \left(\frac{4}{3} ; -\frac{1}{2} \right)$

26) On considère les quatre droites d_1, d_2, d_3 et d_4 tracées dans le repère ci-dessous.

Associer chaque droite à son équation.

1) $-x + y - 1 = 0$

2) $2x - 5 = 0$

3) $2x - 2y + 6 = 0$

4) $2x - 3y = 0$
S’entraîner

Droites parallèles, droites sècantes

27 Déterminer si les droites (AB) et (CD) sont parallèles.
1) \(A(3 ; -2), B(-1 ; -1), C(-3 ; 2)\) et \(D(1 ; 3)\)
2) \(A(-9 ; -2), B(1 ; 3), C(3 ; -2)\) et \(D(1 ; -3)\)
3) \(A\left(\frac{1}{2} ; \frac{7}{3}\right), B\left(\frac{3}{2} ; 3\right), C\left(\frac{9}{5} ; -1\right)\) et \(D\left(-\frac{6}{5} ; -2\right)\)

28 Dans chacun des cas suivants, déterminer si les droites (CD) et (EH) sont parallèles.
1) \(E(2 ; 6), H(10 ; 6), C(1 ; 1)\) et \(D(9 ; -1)\)
2) \(E(-3 ; 10), H(-3 ; 2), C(4 ; 7)\) et \(D(4 ; 8)\)
3) \(E\left(\sqrt{2} ; \frac{1}{\sqrt{3}}\right), H\left(0 ; \frac{2}{\sqrt{3}}\right), C(\sqrt{3} ; \sqrt{2})\) et \(D(-\sqrt{3} ; 0)\)

29 Dans chacun des cas suivants, déterminer si les points \(A, B\) et \(C\) sont alignés.
1) \(A(-9 ; 4), B(1 ; -1)\) et \(C(4 ; -2)\)
2) \(A(-4 ; 0), B(-2 ; -1)\) et \(C\left(\frac{7}{3}\right)\)
3) \(A(-4 ; 4), B(-4 ; 6)\) et \(C(-3 ; 2)\)

30 Dans chacun des cas, déterminer si les points suivants sont alignés.
1) \(F\left(\frac{2}{3} ; 1\right), G\left(-\frac{2}{7} ; \frac{1}{3}\right)\) et \(H(5 ; 2)\)
2) \(B(0 ; 0), C(\sqrt{2} ; \sqrt{6})\) et \(D(4 ; 4\sqrt{3})\)
3) \(E(1 ; 2), F(-3 ; 8,28)\) et \(G(3 ; 2 - \pi)\)

Systèmes

31
1) a) Résoudre le système :
\[
\begin{align*}
4x + 11y - 9 &= 0 \\
3x - 0,5y + 2 &= 0
\end{align*}
\]

b) Interpréter géométriquement le résultat de la question précédente.
2) Même question avec le système :
\[
\begin{align*}
4x - 6y + 1 &= 0 \\
14x - 22 &= 21y
\end{align*}
\]

32 On considère les droites \(d_1, d_2 \) et \(d_3\) d’équation respective :
- \(d_1 : 2x + y + 4 = 0\)
- \(d_2 : -x + 2y - 5 = 0\)
- \(d_3 : 3x - y + 9 = 0\)
1) a) Démontrer que \(d_1 \) et \(d_2\) sont sècantes.
 b) Déterminer les coordonnées de \(A\), point d’intersection de \(d_1 \) et \(d_2\).
2) Montrer que \(d_1, d_2 \) et \(d_3\) sont concourantes.

33 On considère les points \(A(-1 ; 1)\) et \(B(5 ; 2)\) et la droite \(d\) d’équation \(5x + 4y - 16 = 0\).
1) Démontrer que les droites \(d\) et \((AB)\) sont sècantes en un point \(C\).
2) Déterminer les coordonnées de \(C\).

34 Soit \((D)\) la droite d’équation \(y = 2x - 5\). Donner une équation réduite pour chaque type de droite suivante.
1) droite sècante à \((D)\);
2) droite parallèle à \((D)\);
3) droite parallèle à \((D)\) et passant par \(A(2;1)\);
4) droite sècante à \((D)\) et passant par \(A\).

35 Décrire la position relative des droites d’équations suivantes.
1) \(y = -3x + 5\)
2) \(y = 3x\)
3) \(x = 3\)
4) \(y = 3x + 5\)
5) \(y = -3x + 7\)
6) \(y = 3\)

36 Les droites \((AB)\) et \((D)\) sont-elles parallèles ?
1) \(A(5; -10), B(7; -2)\) et \((D) : y = 4x + 5\)
2) \(A(91; -280), B(277; 830)\) et \((D) : y = 6x - 2\)

37 Les points \(A, B\) et \(C\) sont-ils alignés ?
1) \(A(0;6), B(6;0)\) et \(C(3;3)\);
2) \(A(1;7), B(-2; -9)\) et \(C(3;2)\);
3) \(A(-21; -61), B(-1; -1)\) et \(C(23;71)\);

38 On considère les points \(A\) et \(B\) de coordonnées respectives \((1; -5)\) et \((-1;3)\). Déterminer \(y\), ordonnée du point \(C\) de coordonnées \((2; y)\) tel que \(A, B\) et \(C\) soient alignés.

39 Déterminer le nombre de solutions des systèmes.
1) \[
\begin{align*}
x &= 2 \\
x &= -4
\end{align*}
\]
2) \[
\begin{align*}
y &= 2x - 3 \\
4x - 2y &= 6
\end{align*}
\]
3) \[
\begin{align*}
y &= 3x + 5 \\
y &= 2x - 1
\end{align*}
\]
4) \[
\begin{align*}
3x - 5y &= 9 \\
6x - 9y &= 18
\end{align*}
\]

Chapitre G10. Droites et systèmes 67
Pour chacun des systèmes suivants :

- déterminer le nombre de solutions ;
- résoudre les systèmes ayant des solutions.
- Interpréter graphiquement les solutions.

1. \[
\begin{align*}
y &= -x + 2 \\
y &= -3x + 4
\end{align*}
\]

2. \[
\begin{align*}
y &= -2x + 1 \\
y &= \frac{1}{2}
\end{align*}
\]

Résoudre les systèmes suivants :

1. \[
\begin{align*}
4x - y &= -5 \\
8x + 5y &= 32
\end{align*}
\]

2. \[
\begin{align*}
x - 7y &= 60 \\
7x - y &= 60
\end{align*}
\]

Dans un repère, tracer les droites :

- \(d_1 : y = -x + 2 \)
- \(d_2 : y = 3x - 1 \)

Conjecturer graphiquement les coordonnées de leur point d’intersection \(K \). Vérifier par le calcul que les coordonnées lues sont exactes.

![Graphique avec trois droites](image)

1. \[
\begin{align*}
y &= 2x + 4 \\
y &= -x + 1
\end{align*}
\]

2. \[
\begin{align*}
y &= -x + 1 \\
y &= -x - 2
\end{align*}
\]

3. \[
\begin{align*}
y &= 2x + 4 \\
y &= -x - 2
\end{align*}
\]

Problèmes. Approfondissement

Soit \(m \) un réel. On considère la famille de droites \(D_m \) d’équation :

\[x + (m - 1)y - m = 0. \]

1) Tracer dans un repère les droites \(D_1, D_2 \) et \(D_{-1} \).

2) Démontrer que pour tout réel \(m \), la droite \(D_m \) passe par un point \(A \) dont on donnera les coordonnées.

3) a) Peut-on trouver \(m \) tel que la droite \(D_m \) passe par le point \(B(3 ; 0) \) ?

b) Peut-on trouver \(m \) tel que la droite \(D_m \) soit parallèle à l’axe des ordonnées ?

c) Peut-on trouver \(m \) tel que la droite \(D_m \) soit parallèle à l’axe des abscisses ?

On considère les droites \(d_1 \) et \(d_2 \) d’équation respective \(-x + 2y = 0\) et \(2x + y - 5 = 0\).

Trouver une droite \(d_3 \), dont on donnera une équation cartésienne, telle que \(d_1, d_2 \) et \(d_3 \) soient concourantes.

On considère le vecteur \(\vec{u} \left(\frac{1}{m} \right) \) où \(m \) est un nombre réel et le point \(A(-2 ; 0) \).

Soit \(d_m \) la droite passant par \(A \) et de vecteur directeur \(\vec{u} \).

1) Déterminer une équation de \(d_m \).

2) a) Peut-on trouver \(m \) tel que le point \(B(3 ; 2) \) appartienne à \(d_m \) ?

b) Peut-on trouver \(m \) tel que \(d_m \) soit parallèle à la droite \(D \) d’équation \(-5x + 2y - 7 = 0?\)

c) Peut-on trouver \(m \) tel que \(d_m \) soit parallèle à la droite \(D’ \) d’équation \(-4x + 12 = 0\) ?

3) Quels sont les points du plan qui n’appartiennent à aucune droite \(d_m \) ?

Trois amis désirent se faire livrer des pizzas à l’occasion d’une fête qu’ils organisent.

Chez Pasqualito, on leur propose 4,6 \(\in \) la pizza et 8,20 \(\in \) pour la livraison.

« La livraison est trop chère, » dit Margarita.

Chez Nabolito, on leur propose 5,2 \(\in \) la pizza et 3,40 \(\in \) pour la livraison.

« Elles sont trop chères ces pizzas » dit Quatrefroisage.

« De toutes façons, ça nous fera le même prix » remarque Calzone.

Combien nos trois amis avaient-ils l’intention d’acheter de pizzas ?

Voici la représentation graphique d’une fonction affine \(f \). Déterminer, par le calcul, la valeur exacte de \(y_1 \).
49 Au bar de la poste, 5 amis profitent de la terrasse au soleil. Ils ont commandé 2 cafés et 3 thés. Le serveur leur demande 10,10 €. Ils sont rejoints par 4 amis qui commandent 3 cafés et 1 thé. Cette fois-ci, le serveur leur demande 7,10 €. Afin que les amis puissent payer chacun leur part, déterminer le prix d’un thé et le prix d’un café.

50 Solde
Amira va faire les boutiques. Elle achète dans un même magasin deux tee-shirts et une jupe pour 119,70 €. La semaine suivante, elle reçoit un texto du magasin pour des ventes privées : réduction de 50 % pour les tee-shirts et de 30 % sur les jupes. Elle décide de faire des cadeaux à sa mère et ses sœurs et achète 6 tee-shirts et 2 jupes. Elle paye 173,56 €.

51 De grandes coordonnées
Dans un repère (O; I, J) d’unité graphique 1 cm, tracer la droite passant par les points A(−2 198; −2 202) et B(1 892; 1 888). La construction sera soigneusement justifiée.

52 ALGO
Quelle est la valeur de y à la fin de l’exécution de cet algorithme ?

\[
\begin{align*}
\text{Tant que } & y < 50000 \\
y & \leftarrow 2x + 3 \\
x & \leftarrow x + 1 \\
\text{Fin Tant que}
\end{align*}
\]

53 Dans le plan muni d’un repère orthonormé, on considère la droite D d’équation \(y = -\frac{x}{3} + 4 \). Soit M(x; y) un point de D avec \(x \in [0; 12] \). On construit le rectangle OAMB avec A(x; 0) et B(0; \(-\frac{x}{3} + 4 \)).

1) Calculer les coordonnées des points d’intersection de la droite D avec les axes du repère.
2) Calculer l’aire du quadrilatère OAMB lorsque le point M a pour abscisse 9.
3) a) Déterminer, par le calcul, les coordonnées du point M pour que le quadrilatère OAMB soit un carré.
 b) Vérifier que l’aire de OAMB est alors égale à 9.
4) On note \(f(x) \) l’aire du rectangle OAMB.
 La courbe \(C_f \) représentative de la fonction \(f \) est tracée ci-dessous.

5) Justifier que la fonction \(f \) est définie sur l’intervalle \([0; 12] \) par \(f(x) = -\frac{x^2}{3} + 4x \).
6) a) Dresser, à partir du graphique ci-dessus, le tableau de variations de la fonction \(f \).
b) Donner la valeur maximale de l’aire du rectangle OAMB en précisant les coordonnées du point M dans cette situation.

7) Par lecture graphique, déterminer l’ensemble des abscisses des points M pour que l’aire du rectangle OAMB soit supérieure ou égale à 9.

Sur le graphique ci-dessous, les points A et B ont pour coordonnées respectives : $(-1 ; 4)$ et $(2 ; 1)$.

- Partie A -

1) Placer dans le repère ci-dessus les points C et D de coordonnées respectives $(-4 ; 2)$ et $(0 ; -1)$.
2) a) Lire sur le graphique les coordonnées du vecteur \overrightarrow{AB}.
 b) Calculer les coordonnées du vecteur \overrightarrow{CD}.
3) Les droites (AB) et (CD) sont-elles parallèles ? Justifier.

- Partie B -

1) Déterminer graphiquement l’équation réduite de la droite (AB).
2) Justifier qu’une équation cartésienne de la droite (CD) est $3x + 4y + 4 = 0$.
3) Résoudre le système : \[\begin{cases} y = -x + 3 \\ y = -0.75x - 1 \end{cases} \]. Que peut-on en déduire ?
On donne ci-dessous la ligne brisée ABCDE, représentation graphique d’une fonction f.

Répondre, à chacune des dix questions figurant dans le tableau ci-dessous.
Reporter le résultat obtenu dans la colonne de droite.

<table>
<thead>
<tr>
<th>Question</th>
<th>Réponse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. L'image de -3 par f est :</td>
<td></td>
</tr>
<tr>
<td>2. $f(-1) =$</td>
<td></td>
</tr>
<tr>
<td>3. Sur quel intervalle f est-elle définie par $f(x) = x + 2$?</td>
<td></td>
</tr>
<tr>
<td>4. Quelle est l'ordonnée à l'origine de la droite (DE) ?</td>
<td></td>
</tr>
<tr>
<td>5. Exprimer $f(x)$ en fonction de x pour $x \in [-1 ; 3]$.</td>
<td></td>
</tr>
<tr>
<td>6. Sur quel(s) intervalle(s) f est-elle strictement décroissante ?</td>
<td></td>
</tr>
<tr>
<td>7. Quel est l’ensemble des solutions de l’équation $f(x) = 0$?</td>
<td></td>
</tr>
<tr>
<td>8. Quel est l’ensemble des solutions de l’inéquation $f(x) > 2$?</td>
<td></td>
</tr>
<tr>
<td>9. Quel est le coefficient directeur de (BC) ?</td>
<td></td>
</tr>
<tr>
<td>10. Sur quel intervalle f est-elle à valeurs négatives ou nulles ?</td>
<td></td>
</tr>
</tbody>
</table>
S’entraîner

56

Soient \(f\) et \(g\) les fonctions définies pour tout réel par \(f(x) = -2x + 6\) et \(g(x) = 3x - 4\).
On note \(C_f\) et \(C_g\) les graphes respectifs des fonctions \(f\) et \(g\) dans un repère du plan.
Répondre, à chacune des dix questions figurant dans le tableau ci-dessous.
Reporter le résultat obtenu dans la colonne de droite.

<table>
<thead>
<tr>
<th>Question</th>
<th>Réponse</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’image de (-3) par (f) est :</td>
<td></td>
</tr>
<tr>
<td>(f(-1) =)</td>
<td></td>
</tr>
<tr>
<td>Quelle est l’image de ((-4)) par (f) ?</td>
<td></td>
</tr>
<tr>
<td>Quelle est l’ordonnée du point d’abscisse (\frac{2}{3}) de (C_g) ?</td>
<td></td>
</tr>
<tr>
<td>Quel est le sens de variation de (g) sur (\mathbb{R}) ?</td>
<td></td>
</tr>
<tr>
<td>Quelle est l’ordonnée à l’origine de (g) ?</td>
<td></td>
</tr>
<tr>
<td>Quel est le coefficient directeur de (f) ?</td>
<td></td>
</tr>
<tr>
<td>Quel est l’abscisse du point d’intersection de (C_f) avec l’axe des abscisses ?</td>
<td></td>
</tr>
<tr>
<td>Quelle est l’ensemble des solutions de (g(x) \geq 11) ?</td>
<td></td>
</tr>
<tr>
<td>Le point de coordonnées ((2019 ; -4032)) appartient-il à (C_f) ?</td>
<td></td>
</tr>
<tr>
<td>Quel est l’abscisse du point d’intersection de (C_f) avec (C_g) ?</td>
<td></td>
</tr>
<tr>
<td>Sur quel intervalle (f) est-elle à valeurs strictement négatives ?</td>
<td></td>
</tr>
</tbody>
</table>