MATHEMATIQUES

Intervalles et inégalités : entraı̂nement 2 (corrigé)

Exercice 1

1. On résout l'inéquation :

$$5x - 10 > 0$$

$$5x > 0 + 10$$

$$5x > 10$$

$$x > \frac{10}{5}$$

$$x > 2$$

Réponse : ⊠ Tous les nombres strictement supérieurs à 2.

- **2.** Si a < b, alors $\frac{a}{2} < \frac{b}{2}$ (on divise par 2). La réponse **a.** est fausse.
- Si a < b, 5a < 5b (en multipliant par 5) et donc 5a 1 < 5b 1 (en retranchant 1). La réponse **b.** est correcte.

1

• Si a < b, alors -2a > -2b (en multipliant par (-2)) et donc -2a + 3 > -2b + 3 (en ajoutant 3). La réponse **c.** est correcte.

N'oubliez pas!

On ne le répétera jamais assez : quand on multiplie par un nombre négatif, on CHANGE le sens de l'inégalité.

Réponses: $\boxtimes 5a - 1 < 5b - 1$ et $\boxtimes -2a + 3 > -2b + 3$.

- 3. Si $-4a \ge -4b$, alors $a \le b$ (on divise par (-4) < 0). La réponse a. est fausse.
- Si $-4a \ge -4b$, alors $-a \ge -b$ (on divise par 4 > 0). La réponse **b.** est correcte.
- Si $-4a \ge -4b$, alors $-2a \ge -2b$ (on divise par 2 > 0). La réponse **c.** est correcte.

Réponses : $\boxtimes -a \geqslant -b$ et $\boxtimes -2a \geqslant -2b$.

- 4. L'inéquation 2x > 0, peut s'écrire :
- x > 0 en divisant les deux membres par 2.
- -2x < 0 d'où -2x + 1 > 1 en multipliant les deux membres par (-2) puis en ajoutant 1.
- 4x > 0 en multipliant les deux membres par 2.

Réponse : $\boxtimes x > 0$ $\boxtimes -2x + 1 > 1$ $\boxtimes 4x > 0$

5. En retranchant 1, on obtient : -1 < 2x < 0Puis en divisant par 2, on obtient : $-\frac{1}{2} < x < 0$.

Réponses: $\boxtimes -\frac{1}{2} < x < 0$

Exercice 2

- 1. x = 5.
- Le double de 5 est 10. En retranchant 4, on obtient : 10 4 = 6.
- $-2 \times 6 = -12$.

On obtient -12 qui est inférieur à 5.

- **2.** Le nombre choisi est x.
- Le double de x est 2x. En retranchant 4, on obtient : 2x 4.
- En multipliant le résultat par -2, on obtient : -2(2x-4).

Méthode

Seul le calcul littéral permet de répondre à cette question. Pour cela, on choisit comme nombre de départ x et on écrit le résultat en fonction de x.

On souhaite déterminer les valeurs de x pour que l'inégalité -2(2x-4) > x soit vérifiée.

$$-2(2x-4) > x$$

$$-4x+8 > x$$

$$-4x-x > -8$$

$$-5x > -8$$

$$x < \frac{-8}{-5}$$

$$x < \frac{8}{5}$$

Pour obtenir un nombre supérieur au nombre de départ, il faut choisir un nombre inférieur à $\frac{8}{5}$.

On vérifie

5 n'est pas solution de l'inéquation : cela permet de confirmer la réponse à la question 1.

Exercice 3

On sait que $\frac{5}{57} < \frac{25}{23}$

Méthode

 $\frac{5}{57}$ est un nombre plus petit que 1 (le numérateur est plus petit que le dénominateur) et $\frac{25}{23}$ est plus grand que 1 (le numérateur est plus grand que le dénominateur).

Par conséquent, en multipliant par
$$-4$$
, on obtient : $-4 \times \frac{5}{57} > -4 \times \frac{25}{23}$, puis en ajoutant $\frac{35}{3}$, on a $-4 \times \frac{5}{57} + \frac{35}{3} > -4 \times \frac{25}{23} + \frac{35}{3}$

Exercice 4

On note x le montant de la remise en euros sur un litre de fioul.

- 1 litre de fioul avec remise coûte $(0, 75 x) \in$. Le transport est facturé $100 \in$ pour 3000 litres, la facture de cette commande est donc de : 100 + 3000(0, 75 x).
- Ce montant doit être inférieur à 2170 \in (budget maximum de Nabolos).
- On obtient donc: $100 + 3000(0, 75 x) \le 2170$.

$$100 + 3000(0, 75 - x) \leq 2170$$

$$100 + 3000 \times 0, 75 - 3000x \leq 2170$$

$$100 + 2250 - 3000x \leq 2170$$

$$-3000x \leq 2170 - 2350$$

$$x \geq \frac{-180}{3000}$$

$$x \geq 0, 06$$

Pour rentrer dans son budget, Nabolos doit négocier une remise d'au moins $0.06 \in$ (soit 6 centimes d'euro) par litre de fioul.

Méthode

Choix de l'inconnue. On cherche un nombre positif dont on connaît un ordre de grandeur... On pouvait résoudre ce problème avec un autre choix d'inconnue : par exemple le montant d'un litre de fioul remisé.

Méthode

La mise en inéquation du problème se fait pas à pas. Chaque terme de la phrase est traduit en langage mathématique. Le mot « maximum »dans l'énoncé donne le sens de l'inégalité.

Méthode

On résout l'inéquation. On utilise les règles de résolution relatives aux inéquation.

Méthode

On écrit une phrase de conclusion qui permet de répondre clairement au problème posé. On fait attention à la cohérence du résultat.

Exercice 5

On appelle p le prix d'un pull.

La personne B a acheté le pull en trois exemplaires. Elle a donc payé $3p \in$.

La personne A a acheté un pull et un pantalon de jogging. Elle a donc payé $p+54 \in$.

La personne B a dépensé plus d'argent que la personne A.

Cela se traduit par : 3p > p + 54.

$$3p > p + 54$$
 $3p - p > 54$
 $2p > 54$
 $p > \frac{54}{2}$
 $p > 27$

Un pull coûte donc au moins 27 €. La personne a tort.

Par l'absurde

On suppose que le prix du pull est $25 \in$. Dans ce cas, la personne A a dépensé 54 + 25 = 79 \in et la personne B a dépensé $3 \times 25 = 75$ \in donc moins que la personne A ce qui est contredit par l'énoncé. Donc le pull ne peut pas coûter $25 \in$.

Exercice 6

Question 1:

a. Un nombre compris entre -1 et 2 est forcément compris entre -2 et 3, non?

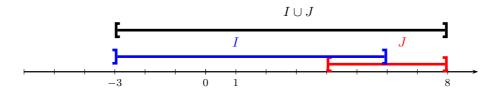
On a $-1\leqslant x<2$ et donc $-2<-1\leqslant x<2<3,$ donc $x\in[-2\ ;\ 3].$

Le fameux contre-exemple

b. Non! Un nombre compris entre -4 et 5 n'est pas forcément compris entre -3 et 3. La preuve : $4,5 \in [-4\ ;\ 5]$ mais $4,5 \notin [-3\ ;\ 3]$.

On cherche un nombre qui vérifie l'hypothèse (appartient à [-4; 5]) mais qui ne vérifie pas la conclusion (appartient à [-3; 3]).

- c. Oui! Si $x \in A \cap B$, alors $x \in A$ puisque x est à la fois dans A et dans B (puisqu'il est dans l'intersection).
- d. Oui! On fait un dessin?

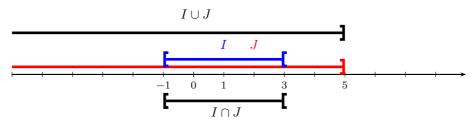


 $I \cup J = [-3; 8].$

a	b	c	d
V	F	V	V

Question 2:

- a. Evident, non?
- **b.** Encore évident, non?
- $\mathbf{c.}\,$ On fait encore un dessin pour voir :



Donc $I\cap J=[-1\ ;\ 3[=I$ et aussi $I\cup J=]-\infty\ ;\ 5]=J$

d. Oui (voir au-dessus)