

Remarque Chaque quartile contient

125 valeurs.

MATHEMATIQUES

Les statistiques : entraînement 1 (corrigé)

Exercice 1

Vérification des 3 critères :

• Moyenne de bonbons dans les 500 paquets :

$$\frac{4 \times 56 + 36 \times 57 + 53 \times 58 + 79 \times 59 + 145 \times 60 + 82 \times 61 + 56 \times 62 + 38 \times 63 + 7 \times 64}{500} = 60,054.$$

On a bien : 59,9 < 60,054 < 60,1 : le premier critère est respecté.

• L'étendue est égale à 64-56=8<10 : le deuxième critère est respecté.

• On cherche Q_1 et Q_3 . Pour cela, on utilise les effectifs cumulés croissants en ajoutant une troisième ligne dans le tableau :

Nombre de bonbons	56	57	58	59	60	61	62	63	64
Effectifs	4	36	53	79	145	82	56	38	7
E.c.c	4	40	93	172	317	399	455	493	500

$$\frac{500}{4} = 125.$$

On obtient Q_1 en prenant la valeur de la série de rang 125.

C'est 59. Ainsi, $Q_1 = 59$.

$$\frac{3\times500}{4} = 375.$$

On obtient Q_3 en prenant la valeur de la série de rang 375. C'est 61. Ainsi, $Q_3 = 61$.

L'écart interquartile est donc égal à 61-59=2<3 : le troisième critère est vérifié. Les critères de qualité sont validés.

Calculatrice

Pour obtenir les valeurs de la moyenne, de Q_1 et de Q_3 . On entre dans List1 les valeurs du caractère (ici le nombre de bonbons) et dans List2 les effectifs correspondants :

1

Et on retrouve les valeurs calculées à la main.

Exercice 2

1. a. En notant $\overline{T_1}$ le temps d'attente moyen :

$$\overline{T_1} = \frac{14 \times 1 + 13 \times 2 + 23 \times 3 + 9 \times 4 + 14 \times 5 + 8 \times 6 + 12 \times 7 + 4 \times 8 + 1 \times 9 + 2 \times 10}{100} \simeq 4$$

Le temps d'attente moyen le lundi est 4 minutes (environ).

b. On obtient la médiane et les quartiles en ajoutant une troisième ligne dans le tableau :

Temps d'attente (en min)	1	2	3	4	5	6	7	8	9	10
Nombre de clients	14	13	23	9	14	8	12	4	1	2
E.c.c	14	27	50	59	73	81	93	97	98	100

• $\frac{100}{2}$ = 50. La médiane est la 50ième valeur : c'est 3. Donc M=3.

Une médiane

On donne ici la valeur d'une médiane. En effet, on peut aussi prendre comme valeur médiane (quand l'effectif est pair, comme c'est le cas ici), la demi somme de la 50ième et la 51ième valeur, c'est-à-dire : $M=\frac{3+4}{2}=3,5$. Ces deux valeurs sont acceptables, puisque au moins 50 % des valeurs sont inférieures ou égales à 3 (mais aussi à 3,5) et au moins 50 % des valeurs sont supérieures ou égales à 3 (mais aussi à 3,5).

- $\frac{100}{4} = 25$. Le premier quartile est la 25ième valeur : c'est 2. Donc $Q_1 = 2$.
- $\frac{3 \times 100}{4} = 75$. Le troisième quartile est la 75ième valeur : c'est 6. Donc $Q_3 = 6$.
- c. Au moins 25 % des clients ont un temps d'attente aux caisses de 4 minutes ou plus (c'est l'interprétation de Q_1).

Au moins 25 % des clients ont un temps d'attente aux caisses de 6 minutes ou plus (c'est l'interprétation de Q_3).

Au moins un client sur deux a un temps d'attente aux caisses de 3 minutes ou plus (c'est l'interprétation de M).

d. 19 clients ont attendu 7 min ou plus ce lundi.

 $\frac{19}{100} = 0, 19$. Ainsi, 19 % des clients ont attendu 7 min ou plus. D'après le directeur adjoint, il faut ouvrir une caisse supplémentaire.

2. En notant $\overline{T_2}$ le temps d'attente moyen :

$$\overline{T_2} = \frac{5 \times 1 + 9 \times 2 + 13 \times 3 + 8 \times 4 + 19 \times 5 + 10 \times 6 + 8 \times 7 + 5 \times 8 + 11 \times 9 + 9 \times 10 + 2 \times 11 + 1 \times 12}{100} \simeq 5, 7 \simeq$$

Le temps d'attente moyen le vendredi est 5,7 minutes (environ).

3. a. Sur les 100 clients du vendredi, il y en a 27 qui attendent au plus 3 minutes (5 attendent 1 min, 9 attendent 2 min et 13 attendent 3 min, soit un total de 27).

En pour centage, cela représente 27 % >25 %. On en déduit qu'au moins un quart des clients du vendre di attendent au plus trois minutes. L'affirmation est vraie.

On ne sait jamais!

Je le précise quand même (après une longue hésitation), un quart, c'est $\frac{1}{4}$, c'est 0,25, c'est 25 %.

- b. Le lundi, il y a 67 clients qui trouvent que le temps d'attente est acceptable.
 Le vendredi, il y a 50 clients qui trouvent que le temps d'attente est acceptable.
 Donc, il n'y a pas autant de clients qui trouvent que le temps d'attente est acceptable le lundi et le vendredi.
 L'affirmation est fausse.
- c. A première vue c'est faux mais en fait, c'est vrai. Puisque qu'il y a 100 clients dans l'échantillon de lundi et 100 clients dans l'échantillon de vendredi, la moyenne sur ces deux échantillons se calcule par :

$$\frac{100\times\overline{T_1}+100\times\overline{T_2}}{200}=\frac{100(\overline{T_1}+\overline{T_2})}{100\times2}=\frac{\overline{T_1}+\overline{T_2}}{2}$$

L'affirmation est vraie.

Explication

Cela vient du fait que les échantillons ont le même effectif, ce qui permet une simplification dans le quotient.

Exercice 3

1. Les valeurs sont bien rangées dans l'ordre croissant :

$$1 \; ; \; 2 \; ; \; 3 \; ; \; 3 \; ; \; 5 \; ; \; \underbrace{5}_{Q_1} \; ; \; 6 \; ; \; 6 \; ; \; 6 \; ; \; 6 \; ; \; 6 \; ; \; 6 \; ; \; 6 \; ; \; 6 \; ; \; 6 \; ; \; 7 \; ; \; \underbrace{7}_{\text{M\'ediane}} \; ; \; 9 \; ; \; 10 \; ; \; 11 \; ; \; 11 \; ; \; \underbrace{13}_{Q_3} \; ; \; 14 \; ; \; 14 \; ; \; 16 \; ; \; 16 \; ; \; 18 \; ; \; 20 \; ; \; \underbrace{10}_{Q_3} \; ; \; \underbrace{10}_{Q_3}$$

Explications:

Il y a 25 valeurs. La médiane est donc la 13 ième valeur de la valeur. On en déduit Me = 7.

$$\frac{N}{4}=\frac{25}{4}=6,25.$$
 Q_1 est donc la 7 ième valeur de la série : $Q_1=5.$

$$\frac{3N}{4}=\frac{3\times25}{4}=18,75.$$
 Q_3 est donc la 19 ième valeur de la série : $Q_3=13.$

$$Me = 7$$
 $Q_1 = 5$ $Q_3 = 13$

2. Au moins 50 % des élèves ont eu une note inférieure ou égale à 7. Au moins 25 % des élèves ont eu une note inférieures ou égales à 5.

Exercice 4

1. Pour calculer la moyenne et la médiane de la série, il faut prendre les centres des intervalles.

Salaire compris dans l'intervalle (en \in)	[1200; 2000 [[2000; 2800 [[2800; 3600 [[3600; 4000]	
	1600	2400	3200	3800	
Nombre de personnes à embaucher	18	1	2	3	

Avec la calculatrice nous obtenons une moyenne de $2067 \in$ et une médiane de $1600 \in$.

Les valeurs sont donc bien conformes au résultats donnés par l'INSEE. M Dacor a raison.

2. Pour le second tableau, on entre les données dans une liste et on obtient une moyenne de 1773 € et une médiane de $1365 \in$.

M Padacor a raison.

3. En conclusion les données du premier tableau sont insuffisantes pour fournir un résultat fiable.

Explication

La première classe est très grande. Son amplitude est $800 \in$. Dans le premier cas, on fait comme si tous les salariés de cette classe avaient exactement $1600 \in$. Ce qui n'est pas du tout le cas dans le deuxième cas. Le salaire moyen moyen de ces salariés (ceux qui ont entre 1200 et $2000 \in$) est beaucoup plus bas. Il est de $1335 \in$, si je ne me suis pas trompé. Vérifiez!