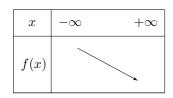
Exercice 1

$$f(x) = -5x + 8$$

m=-5<0, donc f est strictement décroissante sur \mathbb{R} .



$$g(x) = -4 + x$$

m=1doncgest strictement croissante sur \mathbb{R} .

x	$-\infty$	$+\infty$
g(x)		<i></i>

$$h(x) = 3$$

m=0 donc h est constante sur \mathbb{R} .

x	$-\infty$	$+\infty$
h(x)	3 —	→ 3

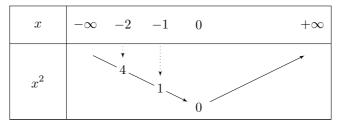
Exercice 2

1. Voir tableaux ci-dessous.

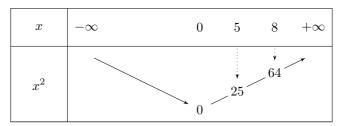
• Si $x \in [-2; -1]$, alors $x^2 \in [1; 4]$.

Pensez-y!

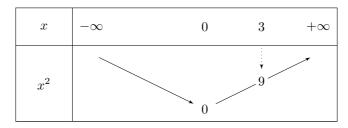
Il y a une inversion de l'ordre entre les nombres et les images du fait de la décroissance de la fonction carré sur $]-\infty$; 0]. Donc, faites attention de bien mettre les nombres dans le bon ordre dans l'intervalle image.



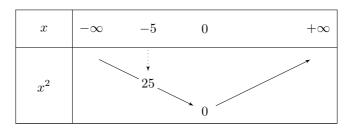
• Si $x \in [5; 8]$, alors $x^2 \in [25; 64]$.



Si x > 3, alors $x^2 > 9$



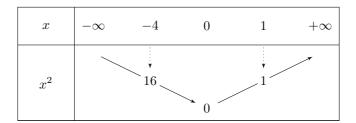
• Si x < -5, alors $x^2 \ge 25$



• Si $x \in [-4 ; 1]$, alors $x^2 \in [0 ; 16]$

Attention

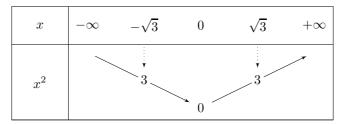
Sur $[-4\ ;\ 1]$, la fonction carré n'est pas monotone. On regarde donc le minimum et le maximum de x^2 lorsque $x\in [-4\ ;\ 1]$. La réponse $[1\ ;\ 16]$ est fausse puisque lorsque $x=0,5\in [-4\ ;\ 1],\ x^2=0,25\notin [1\ ;\ 16].$



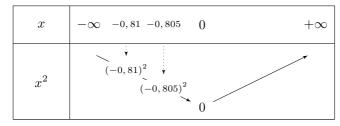
• • Si $x^2 > 3$ alors $x \in]-\infty$; $-\sqrt{3}[\cup]\sqrt{3}$; $+\infty[$.

Attention

Ici, on ne demande pas un encadrement de x! Placez 3 dans le tableau de variations aux bons endroits (lorsque $x \in \mathbb{R}$, x^2 prend 2 fois la valeur 3).



2. a. Comparaison de $(-0,81)^2$ et $(-0,805)^2$



Méthode

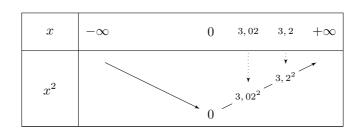
On place dans le tableau les nombres (-0,81) et (-0,805) ainsi que les images par la fonction carré correspondantes, puis on compare ces image en indiquant le sens de variation de la fonction carré qui permet la comparaison.

On a -0.81 < -0.805

Comme la fonction carré est strictement décroissante sur $]-\infty$; 0] (qui contient les nombres (-0,81) et (-0,805)), les images sont rangées dans l'ordre inverse. Ainsi,

$$(-0.81)^2 > (-0.805)^2$$
.

b. Comparaison de $3, 2^2$ et $3, 02^2$



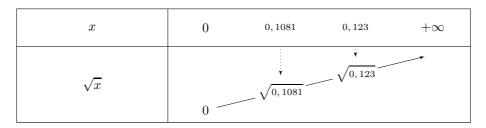
On a 3,02 < 3,2

Comme la fonction carré est strictement croissante sur $[0; +\infty[$ (qui contient les nombres 3,02 et 3,2), les images sont rangées dans le même ordre. Ainsi,

$$3,02^2 < 3,2^2$$
.

Exercice 3

1. La fonction racine carrée est définie sur $[0; +\infty[$ et elle est strictement croissante sur cet intervalle.



2. On a 0,1081 < 0,123

Comme la fonction racine carrée est strictement croissante sur $[0; +\infty[$ (qui contient les nombres 0, 1081 et 0, 123), les images sont rangées dans le même ordre. Ainsi,

$$\sqrt{0,1081} < \sqrt{0,123}$$

3. Avec le tableau de variations :

x	0	5	9	$+\infty$
\sqrt{x}	0	$\sqrt{5}$	3	

 $x \in [5; 9]$ signifie $5 \le x \le 9$ et comme la fonction racine carrée est strictement croissante sur $[0; +\infty[$, on a :

$$\sqrt{5} \leqslant \sqrt{x} \leqslant \sqrt{9} \text{ soit } \sqrt{5} \leqslant \sqrt{x} \leqslant 3$$

Exercice 4

1. L'ensemble de définition de la fonction inverse est \mathbb{R}^* .

Remarque

0 est le seul réel qui n'a pas d'inverse. En effet, si 0 avait un inverse, alors il existerait un réel a tel que $a \times 0 = 1$. Or $a \times 0 = 0$, on obtient donc l'égalité 0 = 1. Ce qui est faux (vous le savez !). Donc 0 n'a pas d'inverse. Ce raisonnement porte le nom de raisonnement par l'absurde.

Tableau de variations de la fonction inverse :

x	$-\infty$	-8	-7	0	4,25	4,3	$+\infty$
$\frac{1}{x}$		$-\frac{1}{8}$	$-\frac{1}{7}$	`	$\frac{1}{4,25}$	$\frac{1}{4,3}$	

2. • 4, 25 < 4, 25.

La fonction inverse est strictement décroissante sur]0; $+\infty[$. Les nombres (positifs) et les images sont donc rangées dans l'ordre inverse.

Ainsi:
$$\frac{1}{4,25} > \frac{1}{4,3}$$
.

• -8<-7. La fonction inverse est strictement décroissante sur] $-\infty$; 0[. Les nombres (négatifs) et les images sont donc rangées dans l'ordre inverse.

Ainsi :
$$-\frac{1}{8} > -\frac{1}{7}$$
.

Conseil

Visualisez la situation dans le tableau de variations en plaçant 4,25 et 4,3 et leurs images.

Exercice 5

1. Tableau de variations de la fonction cube :

x	$-\infty$	-0,8	-0,12	0,12	0,8	$+\infty$
x^3		(-0,8) ³	$(-0,12)^3$	(0,12) ³	(0,8) ³	<i></i>

2. On a 0, 12 < 0, 8

Comme la fonction cube est strictement croissante sur R, les images sont rangées dans le même ordre. Ainsi,

$$0,12^3 < 0,8^3$$

3. On a -0.8 < -0.12

Comme la fonction cube est strictement croissante sur \mathbb{R} , les images sont rangées dans le même ordre. Ainsi,

$$(-0,8)^3 < (-0,12)^3$$